
Journal of Computational Physics 229 (2010) 7739–7746
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Approximate linear response for slow variables of dynamics with
explicit time scale separation

Rafail V. Abramov *

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA
a r t i c l e i n f o

Article history:
Received 18 August 2009
Received in revised form 13 April 2010
Accepted 15 June 2010
Available online 25 June 2010

Keywords:
Linear response
Fluctuation–dissipation theorem
Multiscale dynamics
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.06.029

* Tel.: +1 (312) 413 7945; fax: +1 (312) 996 1491
E-mail address: abramov@math.uic.edu
a b s t r a c t

Many real-world numerical models are notorious for the time scale separation of different
subsets of variables and the inclusion of random processes. The existing algorithms of lin-
ear response to external forcing are vulnerable to the time scale separation due to
increased response errors at fast scales. Here we develop the approximate linear response
algorithm for slow variables in a two-scale dynamical system with explicit separation of
slow and fast variables, which has improved numerical stability and reduced computa-
tional expense.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Recently, Majda and the author [1–4] developed and tested a novel computational algorithm for predicting the mean re-
sponse of nonlinear functions of states of a chaotic dynamical system to small change in external forcing via the fluctuation–
dissipation theorem (FDT). This algorithm (called the short-time FDT (ST-FDT) algorithm in [2–4]) takes into account the fact
that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the clas-
sical quasi-Gaussian formula of the fluctuation–dissipation theorem often fails to produce satisfactory response prediction,
especially in dynamical regimes with weak and moderate chaos and slower mixing. It has been discovered that the ST-FDT
algorithm is an extremely precise response approximation for short response times, and can be blended with the classical
quasi-Gaussian FDT algorithm (qG-FDT) for longer response times to alleviate negative effects of expanding Lyapunov direc-
tions. Additionally, in [1] the author developed a computationally inexpensive approximate method for ST-FDT using the re-
duced-rank tangent map. Majda and Wang [9] developed a comprehensive linear response framework in the case of non-
autonomous dynamics with time-periodic forcing (which also applies for general non-autonomous dynamics).

However, in multiscale dynamical systems with time scale separation the ST-FDT method can be vulnerable to the pres-
ence of the fast variables, especially when the response is practically needed only for slow model variables (such as those in a
climate system), due to increased response errors at fast scales. Moreover, it is often the case that there are only a few slow
variables in the model and a large number of fast variables. Even if only the response of the slow variables is needed, in a
straightforward implementation such as that in [3,2,4], the ST-FDT response operator has to be computed for all variables
in the model, which can be computationally expensive or even practically impossible for models with large sets of fast
variables.

In the work, we develop an approximate response algorithm based on averaged dynamics of multiscale systems
[10,12,13]. The new method allows to compute the response operators directly at slow variables using existing FDT formulas,
which improves numerical stability and reduces computational expense.
. All rights reserved.
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2. Average response for two-scale systems perturbed at slow variables

Consider a two-scale system of Itô stochastic differential equations of the form
dx
dt
¼ Fðx; y; tÞ;

dy ¼ 1
e

Gðx; y; t; eÞdt þ 1ffiffiffi
e
p rðx; y; t; eÞdW t ;

ð2:1Þ
where x ¼ xðtÞ 2 RNx is the set of slow variables, and y ¼ yðtÞ 2 RNy is the set of fast variables. This situation is common in
geophysical science, where the time scale of different state variables of a weather/climate system can range between min-
utes and months (or even years), and fast variables are often driven by a random process. In (2.1) we use the following nota-
tions: Wt is the K-dimensional Wiener process, F and G are Nx and Ny vector-valued functions of x, y and t, and r is a Ny � K
matrix-valued function of x, y and t. For the purpose of this work, here we assume that there is a constant parameter
0 < e� 1 which sets the time scale separation between x(t) and y(t) into slow and fast variables, respectively, and we addi-
tionally assume that G and r continuously depend on e.

We make a general assumption that, given a time t0 and a probability measure Pt0 , the non-autonomous dynamical sys-
tem in (2.1) transports it into Pt0þt , where t is the elapsed interval of time after t0. Then, by qt0þt we denote the marginal
measure of Pt0þt for the set of slow variables x, such that for any observable A(x) its average value hAi(t0 + t) is given by
hAiðt0 þ tÞ ¼ qt0þtðAÞ �
Z

RNx
AðxÞdqt0þtðxÞ: ð2:2Þ
We say that the system in (2.1) is perturbed at slow variables when there is a small forcing w(x)df(t) applied at slow variables:
dx
dt
¼ Fðx; y; tÞ þwðxÞdf ðtÞ;

dy ¼ 1
e

Gðx; y; t; eÞdt þ 1ffiffiffi
e
p rðx; y; t; eÞdW t ;

ð2:3Þ
where w(x) is an Nx � L matrix-valued function of x, while df(t) is a L vector-valued function of time t for some integer L. For
the perturbed system in (2.3) we assume that Pt0 is transported into P�t0þt with the corresponding marginal measure q�t0þt for
slow variables. Finally, we define the average response of A(x) to the small forcing in (2.3), starting at t0, as
dqt0þtðAÞ ¼ q�t0þtðAÞ � qt0þtðAÞ: ð2:4Þ
Our goal here is to compute a linearization of (2.4) with respect to the forcing w(x)df(t) in (2.3) under the assumption that
both the forcing and the response are small, which is provided by FDT [1,3,2,4,8]. Observe that both the forcing w(x)df(t) and
the response function A(x) involve only slow variables x. However, a straightforward application of the FDT linearization of
the response to (2.4) will lead to the computation of the linear response operator for the complete set of model variables,
that is, for both x and y. This is undesirable for the following reasons: first, it can make the computation of the response
expensive (especially if there are many fast variables, which is often the case); and, second, the stability of the ST-FDT re-
sponse operator may suffer due to large Lyapunov exponents at fast variables. In what follows we develop the approximate
FDT formulas under the assumption that the behavior of the slow variables in (2.1) approaches the limiting case of ‘‘infinitely
fast” y-variables.

3. Limiting dynamics for slow variables

We rescale the time in (2.1) and (2.3) as t ¼ e~t. For the rescaled time ~t, the equation for fast variables y in both (2.1) and
(2.3) becomes
dy ¼ Gðx; y; e~t; eÞd~t þ rðx; y; e~t; eÞdW~t : ð3:1Þ

Following [10,12,13], in the vicinity of some x and t, we write the separate degenerate system for the fast variables in the
limiting form as e ? 0:
dz ¼ Gðx; z; t;0Þd~t þ rðx; z; t;0ÞdW~t ; ð3:2Þ
where x and t are treated as constant parameters, and, therefore, z parametrically depends on x and t. Observe that the lim-
iting system for the fast variables in (3.2) is autonomous, that is, it does not explicitly depend on ~t (except for the Wiener
process). Here we assume that (3.2) possesses the invariant ergodic probability measure lx,t, which depends on x and t as
parameters.

Now, following [10,12,13] we write the averaged perturbed and unperturbed systems for the slow variables x as
dx
dt
¼ Fðx; tÞ; ð3:3Þ

dx
dt
¼ Fðx; tÞ þwðxÞdf ðtÞ; ð3:4Þ
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respectively, with F defined as
Fðx; tÞ ¼
Z

RNy
Fðx; z; tÞdlx;tðzÞ: ð3:5Þ
Observe that both (3.3) and (3.4) are fully deterministic. For identical initial conditions x(t0) = x0 the solutions of (3.3) and
(3.4) constitute approximations to the solutions of the equations for slow variables in (2.1) and (2.3), respectively, for a finite
interval of time t � 1 [10,12,13]. We let (3.3) and (3.4) generate the flows �/t0 ;t and �/�t0 ;t , respectively, such that, for
xðt0Þ ¼ x0; �/t0 ;tx0 corresponds to the solution of the averaged equation in (3.3), and �/�t0 ;tx0 corresponds to the solution of
the perturbed averaged equation in (3.4).

4. Approximate fluctuation–dissipation theorem for slow variables

Observe that, for t � 1, qt0þtðAÞ � qt0
ðA 	 �/t0 ;tÞ, and q�t0þtðAÞ � qt0

ðA 	 �/�t0 ;tÞ, since the equations for characteristics (3.3) and
(3.4), along which the measure is transported, are the approximations of (2.1) and (2.3), respectively. With this, we now de-
fine the approximate average response of A(x) to the small forcing in (2.3), starting at time t0, as
�dqt0þtðAÞ ¼
Z

RNx
Að�/�t0 ;txÞ � Að�/t0 ;txÞ
� �

Þdqt0
ðxÞ; ð4:1Þ
where �/t0 ;t and �/�t0 ;t are the flows generated by (3.3) and (3.4), respectively. Upon linearization, the response is given by
�dqt0þtðAÞ ¼
Z

DAð�/t0 ;txÞd�/t0 ;txdqt0
ðxÞ; ð4:2Þ
with d�/t0 ;tx being the solution of
@

@t
d�/t0 ;tx ¼ DxF �/t0 ;tx; t0 þ t

� �
d�/t0 ;txþwð�/t0 ;txÞdf ðt0 þ tÞ; d�/t0 ;0x ¼ 0; ð4:3Þ
where DxF is the Jacobian of F from (3.3) and (3.4) [1,11]. The solution to (4.3) is given by
d�/t0 ;tx ¼
Z t

0
T t0þs;t�s

�/t0 ;sx
wð�/t0 ;sxÞdf ðt0 þ sÞds; ð4:4Þ
where T is the tangent map of �/, computed by solving
@

@t
T t0 ;t

x ¼ DxFð�/t0 ;tx; t0 þ tÞT t0 ;t
x ; T t0 ;0

x ¼ I: ð4:5Þ
With (4.4), the linear response formula in (4.2) can be written as
�dqt0þtðAÞ ¼
Z t

0
RSTðt0; t; sÞdf ðt0 þ sÞds; ð4:6Þ
where the averaged short-time linear response operator (AST-FDT) RSTðt0; t; sÞ is given by
RSTðt0; t; sÞ ¼
Z

DAð�/t0 ;txÞT t0þs;t�s
�/t0 ;sx

wð�/t0 ;sxÞdqt0
ðxÞ: ð4:7Þ
If the probability measure qt0
is absolutely continuous with respect to the Lebesgue’s measure for any t0 (which is usually the

case for stochastically driven fast variables in (2.1)), i.e. dqt0
ðxÞ ¼ pt0

ðxÞdx with pt0
ðxÞ being a known smooth probability den-

sity function, then, using the approximation qt0
ðA 	 �/t0 ;tÞ � qt0þtðAÞ for t � 1, one can integrate the formula in (4.7) by parts,

obtaining the classical FDT formula
Rclassðt0; t; sÞ ¼ �
Z

Að�/t0þs;t�sxÞdivðwðxÞpt0þsðxÞÞdx: ð4:8Þ
5. Restrictions on F, G and r for practical computation

As shown above, the computation of the ST-FDT response formula from (3.3) requires explicit knowledge of the Jacobian
of F , which necessitates either explicit knowledge of lx,t for (3.2) or its independence of x. Here we operate under the
assumption that lx,t is generally unknown, which requires its independence on x:
lx;t ¼ lt : ð5:1Þ
In order to satisfy (5.1), we have to require for (2.1) and (2.3) that
Gðx; y; t;0Þ ¼ Ĝðy; tÞ; rðx; y; t; 0Þ ¼ r̂ðy; tÞ; ð5:2Þ
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that is, when e in G and r is set to zero, the dependence on x vanishes. With (5.1) and (5.2), (3.5) becomes
Fðx; tÞ ¼
Z

RNy
Fðx; z; tÞdltðzÞ: ð5:3Þ
Here one can observe that, even with restrictions on G and r in (5.2), it is still not possible to compute the Jacobian of F for a
general F and unknown lt, and, therefore, additional restrictions must be placed on F. Although more general restrictions are
possible, here, for simplicity, we restrict F to the form
Fðx; y; tÞ ¼ f ðx; tÞ þ hðy; tÞ; ð5:4Þ
which is frequent in geophysical science applications, with
Fðx; tÞ ¼ f ðx; tÞ þ �hðtÞ; �hðtÞ ¼
Z

RNy
hðz; tÞdltðzÞ: ð5:5Þ
Then, the Jacobian of F is the same as the Jacobian of f, that is,
DxFðx; tÞ ¼ Dxf ðx; tÞ: ð5:6Þ
6. Approximate FDT for autonomous dynamics

At this point, for practical computation of the linear response operators we need to convert the formulas in (4.7) and (4.8)
from measure averages to time averages over a long-time trajectory of (2.1). For the special case of autonomous dynamics
(i.e. without explicit time dependence in (2.1)) we have
dx
dt
¼ Fðx; yÞ;

dy ¼ 1
e

Gðx; y; eÞdt þ 1ffiffiffi
e
p rðx; y; eÞdW t ;

ð6:1Þ
with the corresponding averaged system
dx
dt
¼ FðxÞ: ð6:2Þ
The situation we consider here is that initially the system in (6.1) is placed in its statistical equilibrium (that is, qt0
¼ q is the

marginal for slow variables x of the invariant measure for (6.1)), and then forced out of its statistical equilibrium by an exter-
nal perturbation w(x)df(t). For this setup, we obtain
�dqtðAÞ ¼
Z t

0
RSTðt � sÞdf ðt0 þ sÞ;

RSTðtÞ ¼ lim
s!1

1
s

Z s

0
DAðxðt þ sÞÞT t

xðsÞwðxðsÞÞds;

@

@t
T t

x ¼ Dxf ðxðtÞÞT t
x; T0

x ¼ I;

ð6:3Þ
where x(t) is the long-time trajectory of the slow variables from (6.1). Above we use the fact that xðt þ sÞ � �/txðsÞ for finite
time t � 1. Similarly, for the classical FDT, and pt0

ðxÞ ¼ pðxÞ we obtain
RclassðtÞ ¼ � lim
s!1

1
s

Z s

0
Aðxðt þ sÞÞ � divðwðxðsÞÞ þwðxðsÞÞr log pðxðsÞÞ½ 
ds: ð6:4Þ
Further, if the invariant measure has a Gaussian marginal probability density for the slow variables x with mean �x and
covariance C, then the classical FDT response formula can be written as a quasi-Gaussian FDT formula [3,2,4]:
RqGðtÞ ¼ lim
s!1

1
s

Z s

0
Aðxðt þ sÞÞ � �divðwðxðsÞÞ þwðxðsÞÞC�2ðxðsÞ � �xÞ

h i
ds: ð6:5Þ
In practice, (6.3), (6.4) and (6.5) are computed as time autocorrelation functions along a single long-time trajectory of the
unperturbed system in (6.1).

7. Special case with fully deterministic dynamics

Above we assumed that the limiting dynamics in (3.2) possess the ergodic invariant probability measure lx,t (or, for the
assumptions in Section 5, lt). However, if the dynamics in (2.1) is fully deterministic (r = 0), then the invariant measure for
(3.2) may no longer be ergodic (that is, the averaged dynamics of x in (3.2) may depend on the particular ergodic component
of l being sampled). However, for the restrictions on F in (5.4) we claim that it is not an issue: observe that the Jacobian of F
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in (5.6), necessary to compute the tangent map in (6.3) remains the same (as only �h in (5.5) is affected by non-ergodicity of
l), while the actual trajectory of the underlying dynamics in (2.1) is used to propagate the tangent map forward in (6.3), such
that lt is never practically involved. In order to support this claim, all the numerical experiments, performed in this work
below, are carried out with a fully deterministic two-scale dynamical system.

8. Numerical setup and results

In this section we present numerical experiments of the new linear response algorithm for a model with an explicit time
separation of variables into two scales.

Our choice of the testbed numerical model is the full Lorenz 96 (L96) model [5–7], given by
_xk ¼ xk�1ðxkþ1 � xk�2Þ � dxk þ F � k
XJ

j¼1

yk;j;

_yk;j ¼
1
e
½yk;jþ1ðyk;j�1 � yk;jþ2Þ � dyk;j þ F
 þ kxk;

e > 0; k > 0; F ¼ const;

ð8:1Þ
where 1 6 k 6 Nx, 1 6 j 6 J. The following notations are adopted above:

� x is a set of slow variables of size Nx. The following periodic boundary conditions hold for x: xkþNx ¼ xk.
� y is a set of fast variables of size Ny = NxJ, where J is a positive integer. The following boundary conditions hold for

y : ykþNx ;j ¼ yk;j and yk,j+J = yk+1,j.
� F is the constant forcing parameter;
� d is the dissipation parameter, set to 1 for F – 0, and 0 for F = 0;
� e is the time scale separation parameter;
� k is the coupling parameter.

Originally in [5–7] there is no constant forcing F term in the equation for x-variables in (8.1), however, in its absence the
behavior of y-variables is strongly dissipative [1], and here we add constant forcing F in the right-hand side of the second
equation in (8.1) to induce strongly chaotic behavior of y-variables with large positive Lyapunov exponents. Observe that
the equations in (8.1) obey the restrictions on F and G from (5.2) and (5.4). The equations for the fast variables in (8.1)
do not contain stochastic forcing as in (2.1) to demonstrate that the potential non-ergodicity of the invariant probability
measure in (3.2) is not critical, as argued in Section 7.

In the case of zero F and d, the full L96 model in (8.1) preserves the quadratic energy of the form
E ¼ 1
2

XNx

k¼1

x2
k þ

XJ

j¼1

y2
k;j

 !
; ð8:2Þ
and possesses the Liouville (incompressibility) property such that the equilibrium statistical state for (8.1) approaches the
classical Gibbs equilibrium state with zero mean state and uniform energy spectrum as the number of variables tends to
infinity. As a result, the classical FDT formula with Gaussian invariant probability measure (which we call the quasi-Gaussian
FDT, or qG-FDT) is a good response approximation for the L96 model without forcing and dissipation.

Here we study the response of the mean state �x of the slow variables, such that A(x) = x, of the L96 model to a small con-
stant external perturbation df 2 RNx , ‘‘switched on” at response time t = 0 (such that w = I). Under the above assumptions, the
linear response for the slow variables of the full L96 model without forcing and dissipation is given by
d�x ¼ RðtÞdf ; RSTðtÞ ¼ lim
s!1

1
s

Z s

0
ds
Z t

0
T r

xðsÞdr;

RQGðtÞ ¼ � lim
s!1

1
s

Z s

0
ds
Z t

0
xðr þ sÞC�2 xðsÞ � �xð Þdr;

ð8:3Þ
where C2 is the statistical covariance matrix of the slow variables x. We compare the results with the full ST-FDT linear re-
sponse computed from the full set of variables x � y, as it is normally done in [1,3,2,4], which is given by
RSTðtÞ ¼ lim
s!1

1
s

Z s

0
ds
Z t

0
T r

xðsÞdr; ð8:4Þ
where T r
x is the tangent map of the full L96 system in (8.1). Below we study the errors in response produced by the response

operatorsRST ,RST andRQG. The errors are determined by comparison with the full ideal response operatorRI , which is com-
puted by perturbing the model directly via a series of small perturbations [3,2,4,8]. The following parameters are used in the
computation:

� Nx = 8, Ny = 64 (that is, J = 8, 72 variables in total);
� e = 0.1 (weak time scale separation), e = 0.01 (strong time scale separation);
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� k = 0.1 (weak coupling), k = 0.5 (intermediate coupling), k = 1 (strong coupling);
� Two dynamical regimes:

– No forcing and dissipation, the time series are generated on a constant energy sphere of radius 1.
– Forced-dissipative regime, F = 6, d = 1.

During the course of computations, the observed speed-up of AST-FDT over standard ST-FDT was about 200 times. In
Fig. 1 we show the relative errors between the ideal response operator and the ST-FDT, AST-FDT, and qG-FDT response oper-
ators for the slow variables of the L96 model without forcing and dissipation for two values of the time scaling parameter e,
0.01 and 0.1, and two values of the coupling parameter k, 0.1 and 0.5. Observe that the error and blow-up time of the ST-FDT
operator strongly depends of the value of e: for e = 0.1 the blow-up time is roughly 1.5 time units, while for e = 0.01 it is about
0.2 time units. This happens due to the fact that the Lyapunov characteristic time for the full set of variables X � Y is roughly
10 times shorter for e = 0.01 than that for e = 0.1 (the fast variables are roughly ten times ‘‘faster” for e = 0.01). The qG-FDT
response operator is ‘‘exact” for the L96 model without forcing and dissipation as the equilibrium state of the model ap-
proaches the Gaussian distribution, and produces the smallest error among the computed FDT response operators. In the
case of the weak coupling k = 0.1 the AST-FDT operator produces comparable errors to the qG-FDT operator for both the weak
(e = 0.1) and strong (e = 0.01) time scale separation. Remarkably, in the case of the intermediate coupling k = 0.5 and weak
time scale separation e = 0.1 the AST-FDT operator produces significantly larger errors than the qG-FDT operator, but as
the time scale separation becomes strong (e = 0.01), the AST-FDT becomes roughly as precise as the qG-FDT operator.

In Fig. 2 we show the relative errors between the ideal response operator and the ST-FDT, AST-FDT, and qG-FDT response
operators for the slow variables of the L96 model with F = 6 for two values of the time scaling parameter e, 0.01 and 0.1, and
three values of the coupling parameter k, 0.1, 0.5 and 1. Again, observe that the error and blow-up time of the ST-FDT oper-
ator strongly depends of the value of e: for e = 0.1 the blow-up time is roughly 1.5 time units, while for e = 0.01 it is about 0.2
time units. The qG-FDT response operator does not produce a good response approximation for all considered values of e and
k, which is due to the fact that the equilibrium statistical state of the model is no longer Gaussian. On the other hand, for
weak and intermediate coupling k = 0.1, 0.5 the AST-FDT operator yields small errors for weak time scale separation
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Fig. 1. The relative L2 errors between the ideal and various FDT response operators for the L96 model without forcing and dissipation.
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Fig. 2. The relative L2 errors between the ideal and various FDT response operators for the L96 model with F = 6 and d = 1.
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(e = 0.1) and further improves for strong time scale separation (e = 0.01). For the strong coupling k = 1, the AST-FDT operator
again provides the smallest errors among all compared operators until the time T = 1.8, however later exhibits relatively
early blow-up (as compared to k = 0.1, 0.5 where no blow-up is observed).
9. Conclusions

In the work we developed a new response algorithm based on the approximate averaged dynamics of two-scale dynam-
ical systems with optional stochastic forcing at fast variables. The new method allows to compute the response operators
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directly at slow variables using existing FDT formulas, improving numerical stability and reducing computational expense as
compared to the existing methods. The new algorithm has the following practical advantages:

� By implementation, the algorithm is a direct application of the ST-FDT method separately onto the slow variables, which
ensures easy practical implementation.
� There is a significant computational advantage in the case of small number of slow variables and large number of fast

variables, since all the FDT formulas are computed for slow variables only (even though the long-term time series has
to be computed from the full system in (2.1)).
� The new method does not appear to be sensitive to the presence of large Lyapunov exponents at fast variables, and the

numerical stability of its computation is largely restricted by the characteristic Lyapunov time of the slow variables.

The new method is tested on the two-layer Lorenz 96 model with explicit time scale separation of slow and fast variables
through a small parameter e. The model is run in two regimes: one is without forcing and dissipation, where the quasi-
Gaussian FDT provides a valid approximation; another regime is with forcing and dissipation, where the AST-FDT formula
is necessary to calculate a good approximation to the linear response. In both cases, the new AST-FDT algorithm is observed
to be superior to the standard ST-FDT in both numerical stability and computational expense, and more accurate than the
qG-FDT for the regime with forcing and dissipation.
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